Equivariant Cohomotopy implies orientifold tadpole cancellation
نویسندگان
چکیده
منابع مشابه
The Burnside Ring and Equivariant Stable Cohomotopy for Infinite Groups
After we have given a survey on the Burnside ring of a finite group, we discuss and analyze various extensions of this notion to infinite (discrete) groups. The first three are the finite-G-set-version, the inverselimit-version and the covariant Burnside group. The most sophisticated one is the fourth definition as the zero-th equivariant stable cohomotopy of the classifying space for proper ac...
متن کاملThe Burnside Ring and Equivariant Cohomotopy for Infinite Groups
After we have given a survey on the Burnside ring of a finite group, we discuss and analyze various extensions of this notion to infinite (discrete) groups. The first three are the finite-G-set-version, the inverselimit-version and the covariant Burnside group. The most sophisticated one is the fourth definition as the equivariant zero-th cohomotopy of the classifying space for proper actions. ...
متن کاملTadpole Cancellation in Unoriented Liouville Theory
The tadpole cancellation in the unoriented Liouville theory is discussed. Using two different methods — the free field method and the boundary-crosscap state method, we derive one-loop divergences. Both methods require two D1-branes with the symplectic gauge group to cancel the orientifold tadpole divergence. However, the finite part left is different in each method and this difference is studi...
متن کاملEquivariant Cycles and Cancellation for Motivic Cohomology
We introduce a Bredon motivic cohomology theory for smooth schemes defined over a field and equipped with an action by a finite group. These cohomology groups are defined for finite dimensional representations as the hypercohomology of complexes of equivariant correspondences in the equivariant Nisnevich topology. We generalize the theory of presheaves with transfers to the equivariant setting ...
متن کاملA non-trivial ghost kernel for the equivariant stable cohomotopy of projective spaces
It is shown that the ghost kernel for certain equivariant stable cohomotopy groups of projective spaces is non-trivial. The proof is based on the Borel cohomology Adams spectral sequence and the calculations with the Steenrod algebra afforded by it.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2020
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2020.103775